If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+43y+14=0
a = 3; b = 43; c = +14;
Δ = b2-4ac
Δ = 432-4·3·14
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1681}=41$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-41}{2*3}=\frac{-84}{6} =-14 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+41}{2*3}=\frac{-2}{6} =-1/3 $
| 28-2x=6 | | 1/2x+6=3/4 | | -14-10x+8x=26 | | 27f^2+26f-1=0 | | 5y-10y=-6 | | 2/3x+8=5/6 | | -76-8x+3x=94 | | 10x+75=325 | | 88x+44x=90 | | -58-14x+5x=113 | | X+2x+15+2x=180 | | 240÷(9x-21)x=9 | | 11y+18=-9+12−4y | | -7+11z=13z+13 | | 26x+10x=180 | | 2x+6x-7=90 | | 18+w=-5w | | 3x+.5(2x+6)=6x+1. | | -7d+5=-3-8d | | 13x+14-2x=-19 | | 9=2/3h+3 | | 2c-7÷3=5 | | H=-4.9t+8.8t+3 | | 15=36-6x | | 7x+1=2x+36 | | 7t+19=4t-8 | | 6-10m=-7m-6m-9 | | 10.x-24=2x | | 4+2w=35 | | 1+4s=10+5s | | -5q-10=-10q | | 4x+2*10=90 |